شناسایی جداداسی رخساره‌های زنومرفولوژی بخشی از پلاياه گاوخونی با استفاده از قابلیت‌های GIS و RS

عبدال.. سيف "و ملیحه محمود ".

استادیار گروه جغرافیا (زنومرفولوژی)، دانشگاه اصفهان، ایران
دانشجوی دکتری دانشگاه اصفهان، ایران
(تاریخ دریافت: 8/10/1498 تاریخ تصویب: 89/10/28)

چکیده
منطقه مورد بررسی بخشی از شمال پلاياه گاوخونی است. این واحدهای گوچکری به نام رخساره‌های زنومرفولوژی تقسیم می‌شود. هدف در این پژوهش شناسایی و جداداسی رخساره‌های زنومرفولوژی موجود در منطقه مورد بررسی است. برای دستیابی به این هدف از تصویر کاذب رنگی با استفاده از ترکیب پاندای TM7، 4، 3، 2 و RGB:741 و نقشه زنومرفولوژی رخساره‌های پلاياه گاوخونی به کار رفته و از دسته‌بندی نوعی دسته‌بندی بدون خطای (NDVI) بر روی تصویر ماهواره‌ای منطقه مورد بررسی انجام شد که با اندازه و شدت رنگی مختلف فاصله رنگی چشمی به عنوان بهترین روش برای جداداسی رخساره‌های زنومرفولوژی منطقه انتخاب شد. برای این روش کلید تفسیر تصویر رنگی ملایم مورد بررسی تولید و نقشه زنومرفولوژی به کار رفته. یافته‌ها با دست آمده در تحقیق نشان می‌دهد که مدل منطقه از GIS و نتایج لازم برای شناسایی واجد شرایط است. با توجه به نقشه زنومرفولوژی می‌توان اقدام مؤثری برای شناسایی قابلیت‌های تاریک و مسائل مربوط به مدیریت محیط در منطقه مورد بررسی انجام داد.

_keyword: گاوخونی، نقشه زنومرفولوژی، رخساره‌های زنومرفولوژی، قابلیت

E-mail: abdsafe@yahoo.com

1- Remote Sensing
2- Geographic Information System

www.SID.ir
Archive of SID
مقهده

tفسیر تصاویر در سنگش از دور شامل تشخیص، شناسایی و طبقه‌بندی پدیده‌های سطح زمین است. روشهای مختلفی برای انجام این عمل وجود دارد که روش تفسیر چشمی به عنوان روشهایی کم هزینه و با کاربرد پیشتر نسبت به روشهای رقمی برای شناسایی و طبقه‌بندی واحدهای فرمی در زننامه‌های استفاده می‌شود.

بر روی تصاویر ماهواره‌ای معمولی، چنین رنگ‌الگو انداره و شکل، واحدهای همسانی ایجاد می‌شود که به آنها واحدهای فتوتوپوگرافی گفته می‌شود. (Panah, 2007) واحدهای فتوتوپوگرافی با استفاده از داده‌های جانی شامل نشانگر توپوگرافی، نقشه‌باری اراضی، نقشه‌های شریان و باربردی میدانی با واحدهای زننامه‌ای موجود در منطقه می‌شود و در شناسایی و جداسازی واحدهای استفاده می‌شود. منطقه مورد بررسی به علت پیشنهاد اول در این پژوهش (Alavi Panah et al., 2007) جایگزین شد. این پژوهش از داده‌های شناسایی و بررسی رخساره‌های زننامه‌ای توسط بیابان‌های لود برداخته گردید که در تحقیق خود برای طبقه‌بندی واحدها استفاده گردید. (Komaki & Alavi Panah, 2006) تحت عنوان بررسی جداسازی طبقه‌ای کلاس‌های اطلاعاتی بیابان لود با استفاده از داده‌های ماهواره‌ای (PM) مسئولیت آماری باندهای لندست TM مشخص شد که در منطقه واحدهای رخساره‌های زننامه‌ای مورد بررسی خود برداخته گردید.

در مقاله‌ای به (Khosro Shahi et al., 2007) شناسایی و جداسازی منطقه‌بندی بیابان استان بر مبنای سطح زمین استفاده از داده‌های ماهواره‌ای سنجش داده‌ها برداخته و اعلام به اصلاحات این منطقه‌بندی محدوده بیابانی در این استان کرد و سپس واحدهای زننامه‌ای موجود در سطح بیابان را از هم جداکرد.

1- Difference of Gaussian
شاخص (NDVI) به شناسایی و جداکاری رخساره‌های ARCGIS(9.2) منطقه موردبررسی برداخته و در محیط (9.2) اقدام به تهیه نقشه زئوتروپوزی منطقه موردبررسی می‌شود.

منطقه موردبررسی و داده‌های مورد استفاده
منطقه موردبررسی بخشی از پلاگای گاوخونی است که تنوغ در اجنس، پوشش سطحی زمین و... واحدهای کوچک‌تری به تنهایی رخساره‌های زئوتروپوزی را در مطالعه آن به وجود آورده است. پدیدایش رخساره‌های موجود بر سطح منطقه مورد بررسی متأخر از واحدهای پرداخته این است به طوری که اثر تهیه ماسبی در غرب، کوه سیاه در شرق و املاک و رسوبات دریاچه گاوخونی در جنوب بر سطح این منطقه قابل دیدن است. این پدیدایش حتماً در این نوع نشانگر شناسایی و جداکاری رخساره‌های زئوتروپوزی بر سطح منطقه موردبررسی است سعی شده با استفاده از روش تفسیر جسمی به شناسایی و جداکاری رخساره‌های موجود برداخته و پس از آن نقشه رخساره‌ها تهیه شود. داده‌ها و آمار مورد نیاز برای انجام تحقیق شامل موارد زیر است:

- تصویر کاذب رنگی با ترکیب باندهای TM7, TM6, TM5, TM4, TM3, TM2, TM1
- باند انتخابی سنجش ETM
- ماهور 6 لندست 7
- سه رنگ درایف 16-3-8 و به تاریخ آوریل 2002
- تقسیم‌بندی توابعگرافی
- تقسیم‌بندی ماهور
- عکس‌های هواپیما
- سامانه تعیین موقعیت جهانی (GPS)
- ENVI و ARCGIS(9.2)

روش تحقیق
مراحل انجام کار در این تحقیق به ترتیب زیر است:

۱) به‌وسیله کمیتی شاخص NDVI بدست آمده از تصوری بر روی ماهواره‌های از AMDI و AMII مدل تصوری مورد نیاز بوده و برداختن نتایج شاخص تصوری مورد نیاز بوده.

۲) از NDVI، با کارگیری دور ASTER تصوری ماهواره‌های از مدل NDVI استفاده نشان می‌دهد بدلیل این که در این مدل‌ها از مانندی نمی‌تواند مقاله‌ای با عنوان (Javadniya et all, 2009)

۳) به‌وسیله کمیتی شاخص بر روی ماهواره‌های از مدل ASTER تصوری ماهواره‌های ASTER، با کارگیری دور MODIS مدل NDVI و ارزایی نتایج شاخص تصوری مورد نیاز بوده.

نگاه برداختند. نتایج به دست آمده با کارگیری نوع NDVI بر روی ماهواره‌های از مدل NDVI استفاده نشان می‌دهد بدلیل این که در این مدل‌ها از مانندی نمی‌تواند مقاله‌ای با عنوان (Javadniya et all, 2009)

۴) به‌وسیله کمیتی شاخص بر روی ماهواره‌های از مدل ASTER تصوری ماهواره‌های ASTER، با کارگیری دور MODIS مدل NDVI و ارزایی نتایج شاخص تصوری مورد نیاز بوده.

۵) به‌وسیله کمیتی شاخص بر روی ماهواره‌های از مدل ASTER تصوری ماهواره‌های ASTER، با کارگیری دور MODIS مدل NDVI و ارزایی نتایج شاخص تصوری مورد نیاز بوده.

۶) به‌وسیله کمیتی شاخص بر روی ماهواره‌های از مدل ASTER تصوری ماهواره‌های ASTER، با کارگیری دور MODIS مدل NDVI و ارزایی نتایج شاخص تصوری مورد نیاز بوده.
شرکت نمایشگر و چاپ‌سازی رخ‌نقوشهای زئومرفولوژی بخشی از... ۲۷۲

شکل ۲ - موقعیت چگرافیایی منطقه موردبررسی (نگاره)

شکل ۱ - مرحله انجام کار در حاصل

- تعيين حدود منطقه موردبررسی

پييش از انجام مراحل پردازش تصور ماهواره‌ای محدوده منطقه موردبررسی بر روی نقشه توبوگرافی و آبنمايه (هيدرولوژي) 1:25،000 بر اساس وضعیت توبوگرافی، شبکه منطقه و فرم نجفهای مشکل ابتا تبیین شد. پس از آن در محیط نرمافزار (ARCgis) (۲) بر اساس توبوگرافی و لایه هیدرولوژی محدوده منطقه تدوین نقشه دیجیت شده و قابل پردازی منطقه فراهم شد. توسط منطقه موردبررسی بربر با ۱/۵۰۰ کیلومتر مربع است.

مساحت هر کدام از رخ‌نقوشهای منطقه موردبررسی پس از شناسایی در مراحل بعدی تعيين مي شود.

- واردسازي دادهها و عمليات تصحيح هندسي

تصویر

در أغاز این مرحله چارچوب (فريم) تصور ماهواره‌ای ENVI در محیط نرمافزار (۴) فراخوان شد. در اتمام دادههای تصور ماهواره‌ای مورد استفاده است از اینفو نیاژی به تصحیح های level-1G
در این مدل برای انتخاب بهترین ترکیب پانر از روش تصویر ساخته‌شده اصلی استفاده شد که شامل ۱ قابل PC با ۴ پندا اطلاعاتی و ۱ و ۲ پندا اطلاعاتی بین‌پنده‌ای و ۲ پندا اطلاعاتی موجود در تصویر ماهوارهای منطقه مورد بررسی هستند. با به دست آوردن این قابلیت یک حذف داده‌های اضافی و داشتن باندهای کمتری می‌توان تصویر روش‌تر از ترکیبیاندازه به دست آورد. پس از این مرحله با ترکیب پنداهای مختلف، تصویر نگار برخی از منطقه مورد بررسی ساختمانی شد. بهترین ترکیب پندازه به دست آمد برای شناسایی و جداسازی رخ‌سازه‌های موجود در منطقه مورد بررسی تصویر نگار رگ‌کاری می‌باشد از باندهای TM 7، TM 4، TM 1.

برای انتخاب بهترین ترکیب پانره از روش تصویر نمرخ طبقه استفاده شد. با توجه به نتایج که هر کدام از پاندهای سنجیده‌ای متغیر در محدوده طبقه ویژه بسیار متنوع بوده. همچنین تبیین بازتاب سایه‌برداری پس از طبقه فرمی در طول محدوده طبقه تنها بخشی از وضعیت نخست سطح بهبود یافته شد و سپس با استفاده از نتیجه تصویر ماهوارهای منطقه با روش تصویر تنها به اجزای خاص تصویر هندسی شد. پس از این مرحله "ROI" قابل

در مرحله پیش ساخته شد در محیط ENVI(۴.۴) از کل یک تصویر ماهوارهای بر رو چهارچوب تصویر ماهوارهای داده شد. برای تربیت محدوده منطقه مورد بررسی بر روی چهارچوب تصویر ماهوارهای تعیین شد.

- ساخت تصویر کاندید

در این مرحله پیش از ساخت ترکیبات رنگی کاندید برای تهیه تصویر مناسب از روش تبدیل موثرهای اصلی استفاده شد که شامل ۱ قابل PC با ۴ پندا اطلاعاتی است که باندهای بهره‌برداری در منطقه مورد بررسی داشته باشد. برای مثال، باندهای کمتری می‌توان تصویر روش‌تر از ترکیبیاندازه به دست آورد. پس از این مرحله با ترکیب پنداهای مختلف، تصویر نگار برخی از منطقه مورد بررسی ساختمانی شد. بهترین ترکیب پندازه به دست آمد برای شناسایی و جداسازی رخ‌سازه‌های موجود در منطقه مورد بررسی تصویر نگار رگ‌کاری می‌باشد از باندهای TM 7، TM 4، TM 1.

- نتیجه نهایی

در این مدل برای انتخاب بهترین ترکیب پانر از روش تصویر نمرخ طبقه استفاده شد. با توجه به نتایج که هر کدام از پاندهای سنجیده‌ای متغیر در محدوده طبقه ویژه بسیار متنوع بوده. همچنین تبیین بازتاب سایه‌برداری پس از طبقه فرمی در طول محدوده طبقه تنها بخشی از وضعیت نخست سطح بهبود یافته شد و سپس با استفاده از نتیجه تصویر ماهوارهای منطقه با روش تصویر تنها به اجزای خاص تصویر هندسی شد. پس از این مرحله "ROI" قابل

در مرحله پیش ساخته شد در محیط ENVI(۴.۴) از کل یک تصویر ماهوارهای بر روی چهارچوب تصویر ماهوارهای داده شد. برای تربیت محدوده منطقه مورد بررسی بر روی چهارچوب تصویر ماهوارهای تعیین شد.

- ساخت تصویر کاندید

در این مرحله پیش از ساخت ترکیبات رنگی کاندید برای تهیه تصویر مناسب از روش تبدیل موثرهای اصلی استفاده شد که شامل ۱ قابل PC با ۴ پندا اطلاعاتی است که باندهای بهره‌برداری در منطقه مورد بررسی داشته باشد. برای مثال، باندهای کمتری می‌توان تصویر روش‌تر از ترکیبیاندازه به دست آورد. پس از این مرحله با ترکیب پنداهای مختلف، تصویر نگار برخی از منطقه مورد بررسی ساختمانی شد. بهترین ترکیب پندازه به دست آمد برای شناسایی و جداسازی رخ‌سازه‌های موجود در منطقه مورد بررسی تصویر نگار رگ‌کاری می‌باشد از باندهای TM 7، TM 4، TM 1.

- نتیجه نهایی

در این مدل برای انتخاب بهترین ترکیب پانر از روش تصویر نمرخ طبقه استفاده شد. با توجه به نتایج که هر کدام از پاندهای سنجیده‌ای متغیر در محدوده طبقه ویژه بسیار متنوع بوده. همچنین تبیین بازتاب سایه‌برداری پس از طبقه فرمی در طول محدوده طبقه تنها بخشی از وضعیت نخست سطح بهبود یافته شد و سپس با استفاده از نتیجه تصویر ماهوارهای منطقه با روش تصویر تنها به اجزای خاص تصویر هندسی شد. پس از این مرحله "ROI" قابل

در مرحله پیش ساخته شد در محیط ENVI(۴.۴) از کل یک تصویر ماهوارهای بر روی چهارچوب تصویر ماهوارهای داده شد. برای تربیت محدوده منطقه مورد بررسی بر روی چهارچوب تصویر ماهوارهای تعیین شد.

- ساخت تصویر کاندید

در این مرحله پیش از ساخت ترکیبات رنگی کاندید برای تهیه تصویر مناسب از روش تبدیل موثرهای اصلی استفاده شد که شامل ۱ قابل PC با ۴ پندا اطلاعاتی است که باندهای بهره‌برداری در منطقه مورد بررسی داشته باشد. برای مثال، باندهای کمتری می‌توان تصویر روش‌تر از ترکیبیاندازه به دست آورد. پس از این مرحله با ترکیب پنداهای مختلف، تصویر نگار برخی از منطقه مورد بررسی ساختمانی شد. بهترین ترکیب پندازه به دست آمد برای شناسایی و جداسازی رخ‌سازه‌های موجود در منطقه مورد بررسی تصویر نگار رگ‌کاری می‌باشد از باندهای TM 7، TM 4، TM 1.

- نتیجه نهایی

 радіонуклідних відслідків відома. Більшість із них може бути визначена з використанням фотохімічних методів, які можна застосувати для вивчення впливу шкідливих речовин на зростання рослин. Фотохімія - це галузь вчения, що займається вивченням взаємодії рослин з чинниками середовища, включаючи вплив сонця, вологи, температури та хімічних речовин. Фотохімічні методи використовуються для вивчення виділень рослин, що містять сонячну енергію, а також для вивчення взаємодії рослин з різними видами патогенних організмів.

Region Of Interest

www.SID.ir
الف- نیمی‌بر عرضی منطقه موردبررسی

ب- نیمی‌بر طولی منطقه موردبررسی

شکل 3- نیمی‌بر عرضی و طولی منطقه موردبررسی بر روی بر روی تصویر 741

(STretch) تعديل در نمودار خطي

- یکي از روشهای مورد استفاده برای پارسازی، تعیین در نمودار خطي باندهای تصویر است. برای انجام اين کار در آغاز باندهای 0.45 تا 0.7 به كار رفته در ساخت تصویر کاذب رنگی در محیط نرم‌افزار ENVI4.4 فراخوانه شده و سپس با نمایش نمودار هر باند و تعیین در توزيع ارزش عددی داده‌های موجود در هر باند (تعیین در نمودار خطي به روش دستي) به پارسازی تصویر پرداخته شد. با انجام اين عمل بسیاری از رخساره‌ها سطحی از جمله پوشش گياهی، زمين‌های یافکرده و جلگه رستي بر روی تصویر با روشيني بيشتري ديده مي‌شود (شکل 5). با تغييرات ايجاد شده در

با استفاده از اين روش و همچنين با محاسبه شاخص اين ترکيب پس از ترکيبات باندي كه باندي گرم صبایی OIF در آن دخالت داشته شده است به عنوان يكي از پهگیر ترکيبات برای نمايش واحدهاي موجود در منطقه موردبررسی معرفي مي‌شود.

- پارسازی تصویر (پييود كنتراست، فیلترینگ، و شاخص (NDVI))

در اين مرحله پس از ساخت تصویر كاذب رنگي، با به کارگيری روش‌هاي مختلف به پارسازی عوارض موجود بر روی تصویر منطقه موردبررسی اقدام شد.
نمونه تصویر داده‌های موجود در هر باند دچار تغییر می‌شود، در واقع افزودن عدیدی پدیده‌هایی که در هر باند دارای داده‌های بیشتری هستند افزایش یافته و با روشی بیشتر بر روی تصویر دیده می‌شوند. برای نمایش تغییرات ایجاد شده در تصویر استریج شده از روش زیر استفاده شد. پس از ساخت ترکیب کاذب رنگی 741: RGB و استریج نمایش آن با اعمال روش طبقه‌بندی نظارت نشده بر روی تصویر ماهواره‌ای پیش از استریج و تصویر ماهواره‌ای استریج شده، به جداسازی کلاس‌های طبقی تصویر پرداخته و مرحله

نتایج به دست آمده بر نمایش را نشان می‌دهد.
جدول ۱ - میزان آسان‌سازی اطلاعاتی پیش و پس از استرای

<table>
<thead>
<tr>
<th>کلاس‌های طبقه‌بندی</th>
<th>مقدار آسان‌سازی پیش از استرای</th>
<th>مقدار آسان‌سازی پس از استرای</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>۱/۵/۰۷</td>
<td>۰/۰۱۱</td>
<td>۳/۰۱۱</td>
</tr>
<tr>
<td>۲/۵/۵۸۸</td>
<td>۱/۱۱۸۵</td>
<td>۶/۴۲۸۱</td>
</tr>
<tr>
<td>۴/۷/۵۴۵</td>
<td>۱/۷/۶/۱۱</td>
<td>۱۷/۶/۷۱</td>
</tr>
<tr>
<td>۵/۸/۱۶۲</td>
<td>۲/۲/۱۱۶</td>
<td>۸</td>
</tr>
<tr>
<td>۷/۴/۵۱۵</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>جمع</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

نمودار تغییرات آسان‌سازی کلاس‌های طبقه‌بندی پیش از بارزسازی به روش بهبود کنتراست

فیلترینگ

در این تحقیق به دلیل وجود عوارض خطی از جمله آبراهه‌ها، کشش‌ها و جاده‌ها در منطقه مورد بررسی همچنین به منظور بارزسازی مرز واحدهای زنومرفولوژی مجاور با منطقه مورد بررسی برخی از فیلترهای آشکارساز لبه از جمله فیلتر گوسین، فیلتر بالاکنده با پنجره ماسک ۲/۳،۷/۵/۵،۹/۴،۷، ۹/۹، پایین‌گذر، سویل بر روی تصویر ماهواره‌ای منطقه مورد بررسی اعمال شد که این آنها فیلتر بالاکنده با پنجره ماسک ۹/۹ با روشنی پیشتر، عوارض خطی منطقه را بارزسازی می‌کند (شکل ۲). لازم به توضیح است با زیاد شدن انداره پنجره فیلتر برخی از لبه‌های جزئی هما‌طور که در جدول (۱) دیده می‌شود پس از طبقه‌بندی، ۸ کلاس اطلاعاتی بر روی تصویر ماهواره‌ای منطقه مورد بررسی از هم جدا شدند. ۹ هر کدام از کلاس‌ها در سه امر استرای رونمایی از دو نوع خاصی هستند که پس از اعمال استرای دچار افزایش گشت. است. به طور مثال کلاس طبیعی ۱ از ۴۷/۷۷ افزایش یافت. کم‌این مستقل بارزسازی و روشنی داده‌های موجود در این کلاس را در تصویر استرای شده نشان می‌دهد.

www.SID.ir
در تصویر در نظر گرفته شده و لبه‌های کلی ب روشنی یادکرد. با اعمال فیلتر باده‌گشایی احتمالی موجود در منطقه موردبررسی به دنبال پوششان شدن مناطقی از رسوایی کوارتر قابل رایبیت.

شکل 2- بارزسازی عوارض خوی در منطقه موردبررسی با اعمال فیلتر بالاکنن‌گر با پنجره ماسک ۹×۹ (نکارده)

شناخت پوشش گیاهی

شناخت گیاهی گسترده‌تری را که برای اجرای مدل‌سازی شبیه‌سازی در مراحل اولیه استفاده می‌شود. این روش برای اندازه‌گیری و سنجش شناخت گیاهی استفاده می‌شود. در این روش به منظور تعیین شناخت گیاهی از روش‌های ناحیه‌ای NDVI استفاده می‌شود.

RGB

برای به کارگیری این روش در آغاز تصویر ۷۴۱ ENVI 4.4 منطقه موردبررسی وارد می‌گردد. سپس شناختن فراوانی کرده و سپس شناخت اعمال شد. در این روش که در جدول (۲) می‌بینید شناخت به دست آمده عدد (۵۰۰۰) را نشان می‌دهد که نشان دهنده تراکم اندازه پوشش گیاهی در محدوده موردبررسی است.

جدول ۲- میزان شاخص NDVI، انحراف معیار در منطقه موردبررسی

<table>
<thead>
<tr>
<th>NDVI</th>
<th>کمیته</th>
<th>پیشینه</th>
<th>میانگین</th>
<th>انحراف معیار</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2842</td>
<td>200</td>
<td>22448</td>
<td>2755</td>
<td>16929</td>
</tr>
</tbody>
</table>

پس از تعیین شاخص NDVI این شاخص برای نمایش محدوده پوشش گیاهی در منطقه و تعیین گسترده آن استفاده شد. برای انجام این عمل میزان انحراف معیار را به عنوان حد بین مناطق با پوشش گیاهی و بدون پوشش گیاهی در نظر می‌گیریم. مناطق بالاتر از این حد را به عنوان محدوده رخساره منظم (دارای پوشش گیاهی) در نظر می‌گیریم. برای تعیین گسترده این رخساره، تصویر به دست آمده را در محیط {ARCGIS} (نکته ۹.۲) فرآیند کرده و پس از تبدیل به فایل پردازی، گسترده آن را محاسبه می‌کنیم. گسترده این رخساره در منطقه موردبررسی با اعمال شاخص NDVI در منطقه موردبررسی از ۱۲۷ کیلومتر مربع است که ۲۱۲ درصد از کل منطقه را در بر می‌گیرد. شکل (۸) رخساره منظم در منطقه موردبررسی را نشان می‌دهد. در روز این تصویر پوشش گیاهی به صورت کلی به سفید رنگ در مناطق با تراکم زیاد و به صورت ناحیه‌ای در مناطق با تراکم اندک دریچه‌های خشک فراهم شده با روز هم فرآیند این تصویر و تصویر ۷۴۱ منطقه موردبررسی در محیط {ENVI} ۴.۴ می‌توان همه‌روی نقاط سفید رنگ با مناطق سبز رنگ تصویر ۷۴۱ که محل پوشش گیاهی است را نمایش داد.

شکل ۸- باربرسایی پوشش گیاهی در منطقه موردبررسی با اعمال شاخص NDVI (نکارنه)

همسان از نظر شکل، الگو و... (واحدهای فتوترافیک) بر روی تصویر ماهواره‌ای ۷۴۱ منطقه موردبررسی RGB: ۷۴۱: پرداخته شد سپس کلید تفسیر وا هدهای فتوترافیک طبقه‌بندی واحدهای فتوترافیک بر روی تصویر پس از باربرسایی و روش شنید پیشتر تصویر با استفاده از روش تفسیر شنی به شناسایی و جداسازی واحدهای

www.SID.ir
جدول ۲- کلید تفسیر عوارض موجود در منطقه موردبررسی از تصویر کاذب رنگی R741 (نگارند) .

<table>
<thead>
<tr>
<th>رقم</th>
<th>نام</th>
<th>کاربرد</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>سیاه</td>
<td>رنگ با زمینه کرم</td>
</tr>
<tr>
<td>۲</td>
<td>سبز</td>
<td>زمینه‌ای یک کرم</td>
</tr>
<tr>
<td>۳</td>
<td>سبز</td>
<td>منطقه مرطوب</td>
</tr>
<tr>
<td>۴</td>
<td>سبز</td>
<td>رنگهای منظم</td>
</tr>
<tr>
<td>۵</td>
<td>خاکی</td>
<td>سیاه</td>
</tr>
<tr>
<td>۶</td>
<td>خاکی</td>
<td>سیاه</td>
</tr>
<tr>
<td>۷</td>
<td>سیاه</td>
<td>منطقه موردبررسی</td>
</tr>
<tr>
<td>۸</td>
<td>سیاه</td>
<td>منطقه موردبررسی</td>
</tr>
<tr>
<td>۹</td>
<td>سیاه</td>
<td>منطقه موردبررسی</td>
</tr>
</tbody>
</table>

از منطقه موردبررسی صورت گرفت. پس از دیدن و شناسایی رخساره‌های موجود در منطقه موردبررسی به همخوانی آنها با واحدهای فتوپریک برداشته شد. در شکل (۹) واحدهای فتوپریک تصویر و همخوانی آنها با رخساره‌های زنورفلوژیکی منطقه موردبررسی را می‌توان دید.

- مشاهده‌های میدانی و شناسایی رخساره‌های زنورفلوژیکی منطقه موردبررسی

در این مرحله با هدف شناسایی و تشخیص رخساره‌های موجود در سطح منطقه موردبررسی و همخوانی آنها با واحدهای فتوپریک، چندین شاهب روند تصویر ماهواره‌ای با استفاده از اطلاعات جابجایی شامل عکس‌های هوایی، نقشه توپوگرافی و نقشه زمین شناسی بازی‌میدانی
تهیه نقشه زرمونفولوژی منطقه موردبررسی در مرحله آخری فراوانی این تقسیمات موردبررسی در محیط نرم‌افزار ARCGIS (9.2) به تبعیین جداول رخساره‌های شده بر روی تصویر محدوده رخساره‌های برداخته و لاپا رقمه‌های رخساره‌ها تهیه شد. گسترهٔ هر چدام از رخساره‌ها در جدول (4) ارائه شده است.

جدول ۲- مساحت رخساره‌های موجود در منطقه موردبررسی

<table>
<thead>
<tr>
<th>گستره‌ها (km²)</th>
<th>گستره‌ها %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-12</td>
<td>7/12</td>
</tr>
<tr>
<td>12-100</td>
<td>10/06</td>
</tr>
<tr>
<td>100-1000</td>
<td>11/09</td>
</tr>
<tr>
<td>1000-1500</td>
<td>2/16</td>
</tr>
<tr>
<td>1500-1500</td>
<td>4/65</td>
</tr>
<tr>
<td>1500-10000</td>
<td>100</td>
</tr>
</tbody>
</table>

با توجه به اینکه برای هر هر یک از هدف‌های این بررسی انتخاب بهترین روش برای شناسایی و جداسازی رخساره‌های منطقه موردبررسی است با اجتناب طبقه‌بندی به روش رقمه‌ای

جدول ۳- معیارهای بیان درصدی برای روش‌های مختلف طبقه‌بندی

<table>
<thead>
<tr>
<th>روش رقمه‌ای (نگارش نشده)</th>
<th>تفسیر جسمی</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصدی کاربر %</td>
<td>درصدی کاربر %</td>
</tr>
<tr>
<td>درصدی کلی</td>
<td>درصدی کلی</td>
</tr>
<tr>
<td>تولیدکننده %</td>
<td>تولیدکننده %</td>
</tr>
</tbody>
</table>

واحدهای یادداشتی جداسازی شده

- زمین‌های یافت کرده
- زمین‌های پر کرده
- سکویپر بی‌پایتی
- پهنه‌سازی و سکویپر
- سطح‌آب
- رخساره منظم
- کلاس ۱
- کلاس ۲
- کلاس ۳
- کلاس ۴
- کلاس ۵

همانطور که در جدول (۶) دیده می‌شود این روش در مقایسه با طبقه‌بندی نظارت نشده دارای درصد و میزان دقت بیشتری است اما در بعضی موارد با واقعیت زمین‌های همکنونی ندارد. در این طبقه‌بندی با وجود اینکه برای جداسازی کلاس‌ها نواحی انتخابی (ROI) تعیین شده است ما به دلیل رقمه‌ای بدون طبقه‌بندی، پیشنهاد می‌دهیم: همان‌طور که در شکل (۱۰) می‌بیند قسمت‌هایی از رخساره گل‌گیسی تحت تأثیر بالا آمدان سطح آب در فصول...
تفسیر کاربر امکان‌پذیر خواهد بود و این مسئله اهمیت و برتری روش تفسیر چشمی در شناسایی رخساره‌های موجود در منطقه موردبررسی را نسبت به روش‌های رقیمی نشان می‌دهد. به‌هین منظر پس از مشاهده‌های میدانی نقش رخساره‌های زنومرفولوژی منطقه موردبررسی تهیه شده است که در شکل (111) می‌بینید.

مرطوب در بعضی قسمت‌ها با رنگی متفاوت بر روی تصویر مشخص شده است. این عامل موجب شده این رخساره در دو کلاس طبیعی 4 و 5 قرار گیرد. در بعضی موارد میزان تداخل کلاس‌ها بسیار زیاد بوده و طوری که رخساره سنگفرشها به دلیل همانندی طبیعی در محدوده جلوی نسبی (کلاس 4) وارد شده است این مسئله نشان می‌دهد شناسایی محدوده رخساره‌ها تنها با مشاهده‌های میدانی و

شکل 10 - کلاس‌های اطلاعاتی در روش طبقه‌بندی نظرت شده (نگارش)

شکل 11 - نقشه زنومرفولوژی منطقه موردبررسی (نگارش)

[www.SID.ir]
نتایج
واحدهای مورفولوژی مجاور منطقه موربرسی و نقش آنها در ایجاد رخساره‌های زن‌نورتولوژی منطقه
پیدایش رخساره‌های موجود بر سطح منطقه موربرسی متأثر از موقعیت منطقه نسبت به واحدهای پیرامون آن است به طوری که تعدادی مسایل از غرب، اینسلبرگ زمین ساختی که سیاه در شرق و اماح دریاچه کبیر در جنوب و... بر سطح منطقه موربرسی قابل دیدن است از این رو در اغلب نکته واحدهای محیط در ایجاد رخساره‌های سطحی منطقه اشاره می‌شود.

کوه سیاه (اینسلبرگ زمین ساختی)
ساختار آدنی این ارتفاعات به عنوان یک اینسلبرگ زمین ساختی می‌باشد. این رخساره‌زنوترولولوژی نقش عمده‌ای در سرازیر شدن روان‌های جاری به مدت جاله گاکوختنی دارد از این رو رسوباتی که توسط این جریان‌ها از شرق به سطح منطقه اضافه می‌شود می‌تواند قسمتی از رخساره‌های سطحی منطقه موربرسی را تشکیل دهد.

دریاچه فصلی جاله گاکوختنی
جاله گاکوختنی نقطه انتهایی حوضه زاینده رو است که این رودخانه همراه با رسوبات حمل شده در دهانه آن رسوبات موجود در منطقه موربرسی را به وجود آورده است. از این رو به گذشته و در زمان‌های بی‌آبی امکان بالامند سطح آب در دریاچه فصلی گاکوختنی وجود دارد این واقع می‌تواند نقش عمده‌ای در فراگیری منطقه موربرسی و انتقال نهنشت‌های رسوبی خود بر سطح آن را داشته باشد.

تبیه ماساسی
در سمت غرب منطقه موربرسی یکی از اشکال عمده در مناطق گرم و خشک به نام تهیه ماساسی وجود دارد که از اشکال واقع بر سطح پلاک‌های سخت بوده، این به عنوان یکی از قراردهنده غاپ فرسایشی در منطقه موربرسی نقش مؤثری در جا به جای رسوبات ماساسی به سمت منطقه

شناسایی و تغییر شکل رخساره‌های زن‌نورتولوژی بخشی از ...
موربرسی و تغییر شکل رخساره‌های موجود بر سطح آن دارد. میزان زیادی از حجم رسوبات ماساسی به دلیل رخداد سیل‌دهی در دوره‌های لایه‌های زیرین باقی مانده و تشکیل لایه‌های ماساسی در مقطع عمودی Ra می‌دهند. این رسوبات در سطح نیز رخساره‌های ماساسی و رسی همراه با املاح را به وقوع می‌آورند.

رخساره‌های زنوترولولوژی منطقه موربرسی
بر پایه نقشه زنوترولواژی به دست آمده از منطقه موربرسی واحدهای زیر معرفی و تشریح می‌شود:

- چلگه رست
جریان های آب مناطق کوهستانی، با یک چند جوشک رود به جاهای درونی پروپیده و مواد محمله خود را به شکل رس و یا سیلیت می‌باشد به جا می‌گذارند این رسوبات به تدریج دشت‌های سیلیتی بنا شده و در مدت زمان طولانی تشکیل می‌دهند که به آن چلگه رست می‌گویند. خاک چلگه‌های رست سنگین و اغلب همراه با میزان زیادی نمک به ویژه کلر کرم می‌باشد (Ahmadi, 2008). اراضی چلگه رست محصوله شهربازنده و زونه و یا باعث دلتای قبیلی زاینده رو را نیز پوشانده است. رخساره‌های واقع بر سطح این اراضی شامل زمین‌های یافته‌کرد، رخساره ورده و جربه و...

در هنگام پرداخت با بالا رفتن سطح آب دریاچهای اراضی به زیر آب رفته و و مناطق مرطوب در محل تخلیه رودخانه به دریاچه تبدیل می‌شود. این رخساره در انتهای ترین یافته منطقه موربرسی نیز به صورت اراضی مرطوب و یا دیه می‌شوند. این رخساره به روى تصور با نگ آبی و کرم دیده می‌شود. نخ اواها به سطح این اراضی بر روی تصور به بروز قابل دیدن است.

- زمین‌های یافته کرده نمکی
یکی از رخساره‌های زن‌نورتولوژی موجود بر سطح منطقه موربرسی زمین‌های یافته کرده نمکی است. این اراضی از روى تصور ماهورادی منطقه با تركیب RGB: 741:741
رضخاره منظم

این رخساره در ترکیب کاذب رنگ 741: RGB مروربررسی با رنگ سبز در مسیر رودخانه زاینده رود دیده می‌شود. این رخساره به موادی شاخه‌های زاویه‌های زاپاشه رود در سطح منطقه موردبررسی به صورت براکنده می‌شود. در قسمت‌های قبل این واحدها بر روی تصویر ماهواره‌ای منطقه از راه اعمال شاخه‌ای NDVI شناسایی و بارزسازی شده است.

- پهنه ماسه‌ای- رسانه

این رخساره که حاشیه جابجایی رسوبات ماسه‌ای به وسیله پد و زمین های رسانه است بخش گسترده ای از منطقه را در غرب پویش می‌دهد. رویت‌های زاینده‌رود این بخش را از قسمت‌هایی که در اواخر پویش گیاهی با تراکم بیشتر است جدا کرده به طوری که کاهش متقاوتی نسبت به مناطق مرکزی منطقه موردبررسی دارد. (شکل ۱۲ قسمت د) در این تصویر اثر‌های آبی دو منظره رخساره منظم را از زمین‌های مجاور تهیه ماسه‌ای جدا کرده است.

در شکل (۱۲) بخش از رخساره‌های واقع در منطقه موردبررسی را می‌توان دید.

- سنگفرش بی‌پایان (رگ)

اراضی گسترده به قطعه‌های زمین و درشت سنگ ناشی از عمل کاوش یاد و آب از رخساره‌های صطحی منطقه موردبررسی در قسمت شمال شرق آن است. این رخساره ادامه دسته‌های رگی در بالادست منطقه موردبررسی می‌باشد. این اراضی با رنگ سیاه و پس زمینه کرم رنگ پس از برگ نمایی تصویر ماهواره‌ای منطقه موردبررسی قابل دیدن می‌باشد.
بحث و نتیجه‌گیری
منطقه موردرپلنی بخشی از واحد پلاگای گاوشونی در جنوب شرق اصفهان است. این بخش با بخش‌های مجاور خود در تعامل بوده و تحت تأثیر آنها به واحدهای کوچکتری به نام رخساره زنوتروفلوژی تقسیم شده است.
در این بخش رخساره‌های منطقه موردرپلنی با به کارگیری مدل GIS و ARCGIS و RS انجام شده است.
کلیه مراحل مربوط به شناسایی و تشخیص انواع
اطلاعاتی در محیط نرم‌افزارهای (2.9) و
ENVI (4.4) انجام شد.
عملیات مربوط به سنجش از دور شامل واردسازی داده‌ها,
تصمیح هندسی، بازرسی، ساخت ترکیب کاذب، RF,
پیوند کنتراست، فیلترینگ و نشان‌دهی به شناسایی و
طبیعتی واحدهای زنوتروفلوژی به روش تفسیر چشمی
است. نتیجه بسته آن‌ها می‌تواند تصویر بسیار
آممده از ترکیب باندهای 2.4.1 پیشترین داده‌ها را از منطقه
موردرپلنی منطقه نشان می‌دهد. در مرحله بازرسی پس
از اعمال روی فیلترینگ روند تصویر و مقایسه فیلترهای
مختلف مشخص شد که به‌لگر یکنواحه 98.9
عوارض خطا (آبراهه‌ها، جاده‌ها و ...) نیاز داشته‌بوده.

www.SID.ir
- Topographic Organization of Iran, Topographic Map on scale of 1:50000,125000.
- Topographic Organization of Iran, Geological Map on scale of 1:250000.
- Topographic Organization of Iran, Arial Images on scale of 1:00000
Separation and Recognition of Geomorphic Facies in Part of Gavkhouni Playa using RS and GIS Techniques

A. Seif¹ and M. Mohamadi²
¹ Assistant Prof, University of Isfahan, Isfahan, I.R. Iran
² Ph.D Student, University of Isfahan, Isfahan , I.R. Iran
(Received: 06 January, Accepted: 18 January 2011)

Abstract
The study area is part of the north Gavkhouni Hole. This area is divided into smaller units named geomorphic facies because of variation in material, land cover, etc. The purpose of this study is to identify and separate the geomorphic facies of the study area. To achieve this goal, false color images obtained from the composite bands of red, green, and blue, six reflective bands of ETM sensor of Landsat 7, topographic maps 1:50000 and 1:25000, geological map 1:250000 and field observations were used. ArcGIS 9.2 and ENVI 4.4 were also used to process images and prepare thematic layers. In this research, operations related to remote sensing, including inserting of data, geometric correction and different methods of detection (making color combinations, enhancement of image, filtering and NDVI) were performed on satellite image of the study area. Then, the geomorphic facies were classified applying different methods. Visual interpretation method was selected as the best method for separating of the facies. In this method interpretation key was produced based on false color image (RGB: 741), then geomorphic map of study area was prepared. The results indicate the ability of RS and GIS techniques to identify units and produce geomorphic map. The map helps us to evaluate land suitability and environmental management of the study area.

Keywords: Geomorphic map, Geomorphic facies, Gavkhouni playa, GIS and RS capabilities